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Resolution of linear inverse problems
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Brief review of compressed sensing (CS)

y A x

Theory of compressive sensing
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[Donoho et al., 2005
     Candès-Tao, 2006, ...]

Formulation of ill-posed recovery problem when 2K < N
y

⌧ N
x

(P0) min
x

ky �Axk22 subject to kxk0  K

Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique

and the recovery problem (P0) is equivalent to:

(P1) min
x

ky �Axk22 subject to kxk1  C1

(P1’) min
x

kxk1 subject to ky �Axk22  �2

Generalized sampling setting (after discretization)

Linear inverse problem: y = Hs+ n

Sparse representation of signal: s = Wx with kxk0 = K ⌧ N
x

Equivalent N
y

⇥N
x

sensing matrix : A = HW



Constrained l1 minimization
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(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 

Representer theorem for constrained `1 minimization

(P1) V = arg min
x2`1(Z)

kxk
`1 s.t. H{x} 2 C

is convex, weak*-compact with extreme points of the form

xsparse[·] =
KX

k=1

a

k

�[·� n

k

] with K = kxsparsek0  M .

V

If CS condition is satisfied,
then solution is unique

⇒  sparsifying effect
Discrete signal to reconstruct: x = (x[n])n2Z

Sensing operator H : `1(Z) ! RM

x 7! z = H{x} = (hx, h1i, . . . , hx, hM i) with hm 2 `1(Z)

Closed convex set in measurement space: C ⇢ RM

Controlling sparsity
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Measurement model: ym = hhm, xi+ n[m], m = 1, . . . ,M

λ →10-3 10-2 10-1 100 101 102

S
p

a
rs

ity
 I

n
d

e
x 

(K
) 
→

0

10

20

30

40

50

b): Gaussian model
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a): Sparse model

Conv.
DCT
CS

xsparse = arg min
x2`1(Z)
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Geometry of l2  vs. l1 minimization
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Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x

kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x

kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C
y1 = h

T
1 x

y

2�

Geometry of l2  vs. l1 minimization
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Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x

kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x

kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C y1 = h

T
1 x

sparse extreme points

Configuration for non-unique `1 solution



Sparsity and non-quadratic regularization 
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Iterative reweighted least squares (IRLS) or FISTA

`1 regularization (Total variation)

R(s) = �Ls�`1 with L: gradient

s? = argmin ⇥g �Hs⇥22| {z }
data consistency

+ �R(s)| {z }
regularization

R(s) =
P

n �
�
[Ls]n

�

State-of-the-art in MRI
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[Rudin-Osher, 1992;
     Lustig et al., 2007, ...]

10.1 DISCRETIZATION OF INVERSE PROBLEMS
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■ Two aspects
■ Discretization of physical forward model
■ Discretization of probability model

How? 
By projection on a suitable set of basis functions

{�k(r)}k2⌦
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Generalized innovation model

1

3

Whitening operator

L�1

L

2

Regularization operator
vs. wavelet analysis

4 Analysis step

X = h', wi

Theoretical framework: Gelfand’s theory of generalized stochastic processes

innovation process sparse stochastic process
Very easy ! (after solving 1. & 2.)

 i = L⇤�iEasy when:

Characterization of continuous-domain white noise

Higher mathematics: generalized functions (Schwartz)
measures on topological vector spaces

Specification of inverse operator
Functional analysis solution of SDE

s = L�1ww

Lévy exponent: f(!)

= hL�1⇤', wiY = h', si

Minlos-Bochner and Lévy-Khintchine theorems

Discretization of reconstruction problem
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Innovation model

u = Ls (matrix notation)

Ls = w

s = L�1w
Discretization

pU is part of infinitely divisible family

Spline-like reconstruction model: s(r) =
X

k2⌦

s[k]�k(r)  ! s = (s[k])k2⌦

Physical model: image formation and acquisition

ym =

Z

Rd

s1(x)⌘m(x)dx+ n[m] = hs1, ⌘mi+ n[m], (m = 1, . . . ,M)

y = y0 + n = Hs+ n

[H]m,k = h⌘m,�ki =
Z

Rd

⌘m(r)�k(r)dr: (M ⇥K) system matrix

n: i.i.d. noise with pdf pN



Posterior probability distribution
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pS|Y (s|y) =
pY |S(y|s)pS(s)

pY (y)
=

pN
�
y �Hs

�
pS(s)

pY (y)

=
1

Z
pN (y �Hs)pS(s)

(Bayes’ rule)

u = Ls ) pS(s) / pU (Ls) ⇡
Q

k2⌦ pU
�
[Ls]k

�

... and then take the log and maximize ...

Additive white Gaussian noise scenario (AWGN)

pS|Y (s|y) / exp

✓
�ky �Hsk2

2�2

◆ Y

k2⌦

pU
�
[Ls]k

�

General form of MAP estimator
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Sparser
sMAP = argmin

⇣
1
2 ky �Hsk22 + �2

P
n �U ([Ls]n)

⌘

Gaussian: p
U

(x) =

1p
2⇡�0

e

�x

2
/(2�2

0) ) �

U

(x) =

1
2�2

0
x

2
+ C1

Laplace: p
U

(x) =

�

2 e
��|x| ) �

U

(x) = �|x|+ C2

Student: p
U

(x) =

1

B

�
r,

1
2

�
✓

1

x

2
+ 1

◆
r+ 1

2

) �

U

(x) =

�
r +

1

2

�
log(1 + x

2
) + C3

-4 -2 0 2 4
0

1

2

3

4

5

Potential: �U (x) = � log pU (x)
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256 Recovery of sparse signals

pX (x) ©X (x) =° log pX (x) as x ! 0 ©X (x) as x !±1 Smooth Convex

Gaussian a0 +
x2

2æ2 a0 +
x2

2æ2 Yes Yes

Laplace (∏ 2R+) a0 +∏|x| a0 +∏|x| No Yes

Sym Gamma r 2R+
(

log(a0
0 +a0

r |x|2r°1 +O(x2)), r < 3/2

a0 + x2

4r°6 +O(|x|min(4,2r°1)), r > 3/2
b0 +|x|° (r °1)log |x| No No

Hyperbolic secant a0 +
º2x2

8æ2
0

+O
°

x4¢ ° logæ0 +
º

2æ0
|x| Yes Yes

Meixner r, s 2R+ a0 +
√(1)(r /2)

4s2 x2 +O
°

x4¢ b0 +
º

2s
|x|° (r °1)log |x| Yes No

Cauchy s 2R+ a0 + x2

s2 +O(x4) b0 ° log s +2log |x| Yes No

Sym Student r 2R+ a0 +
°

r + 1
2

¢

x2 +O
°

x4¢ b0 + (2r +1)log |x| Yes No

SÆS, Æ 2 (0,2], s 2R+ a0 +
°
° 3
Æ

¢

2s2°
° 1
Æ

¢ x2 +O
°

x4¢ b0 °Æ log s + (Æ+1)log |x| Yes No

°(z) and√(1)(r ) are Euler’s gamma and first-order poly-gamma functions, respectively (see Appendix C).

Table 10.1 Asymptotic behavior of the potential function ©X (x) for the infinite-divisible

distributions in Table 4.1.

`1-type regularizer; it is the preferred solution for solving deterministic compressed-
sensing and sparse-signal-recovery problems. If L is a first-order derivative operator,
then (10.12) maps into total-variation (TV) regularization which is widely used in
applications [ROF92]. The third log-based potential is interesting as well because
it relates to the limit on an `p relaxation scheme when p tends to zero [WN10]. The
latter has been proposed by several authors as a practical “debiasing” method for im-
proving the sparsity of the solution of a compressed-sensing problem [CW08]. The
connection between log and `p norm relaxation is provided by the limit

log x2 = lim
p!0

x2p °1
p

which is compatible with Student’s prior for x2 ¿ 1.

10.2.1 Potential function

In the present Bayesian framework, the potential function ©U (x) = ° log pU (x) is
determined by the Lévy exponent f (!) of the continuous-domain innovation w or,
equivalently, by the canonical noise pdf pid(x) in Proposition 4.12. Specifically, pU (x)
is infinitely divisible with modified Lévy exponent fØ̃§Ø_L

(!) given by (10.7). While the
exact form of pU (x) is also depends on the B-spline kernel ØL, a remarkable aspect of

LMMSE / Gaussian solution
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sMAP = arg min
s2RK

C2(s,y) with C2(s,y) =
1

2
ky �Hsk22 + �2 1

2
kLGsk22

@C2(s,y)
@s

= �HT (y �Hs) + �2LT
GLGs = 0

HTHCssH
T + �2C�1

ss CssH
T = HTHCssH

T + �2HT

�
HTH+ �2C�1

ss

�
CssH

T = HT
�
HCssH

T + �2I
�

CssH
T
�
HCssH

T + �2I
��1

=
�
HTH+ �2C�1

ss

��1
HT

)

LG = C�1/2
ss where Css = E{ssT }

C�1
ss = LT

GLG and Cnn = E{nnT } = �2I



Proximal operator: pointwise denoiser
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-4 -2 0 2 4

-3

-2

-1

0

1

2

3

�2�U (u)

︎ linear attenuation
︎ soft-threshold
︎ shrinkage function ⇡ `p relaxation for p ! 0

`2 minimization

`1 minimization

Maximum a posteriori (MAP) estimation
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Auxiliary innovation variable: u = Ls

Constrained optimization formulation

LA(s,u,↵) =
1

2
kg �Hsk22 + �2

X

n

�U ([u]n) +↵T (Ls� u) +
µ

2
kLs� uk22

Lagrange multiplier vector: ↵



Alternating direction method of multipliers (ADMM)
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Linear inverse problem:

Nonlinear denoising:

sk+1 � arg min
s�RN

LA(s,u
k,↵k)

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

Sequential minimization

Proximal operator taylored to stochastic model

prox�U
(y;�) = argmin

u

1

2

|y � u|2 + ��U (u)

↵k+1 = ↵k + µ
�
Lsk+1 � uk

�

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk �↵k

�

LA(s,u,↵) =
1

2
kg �Hsk22 + �2

X

n

�U ([u]n) +↵T (Ls� u) +
µ

2
kLs� uk22

uk+1
= prox�U

�
Lsk+1

+

1
µ↵

k+1
;

�2

µ

�

10.3 RECONSTRUCTION OF BIOMEDICAL IMAGES 

22

■ Deconvolution of fluorescent micrographs
■ Magnetic resonance imaging
■ X-ray tomography

■ Common image model and numerical set-up

1
|!|� spectral decay  ! (��)

�
2
s = w (self-similar image model)

Robust localization/decoupling L: discrete gradient magnitude (rotation invariant)

Three flavors of potentials:

|x|2 (Gaussian), |x| (Laplacian), log(x

2
+ ✏) (Student)
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Relevance of self-similariy for bio-imaging
■ Fractals and physiology

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

!2 !1 0 1 2

!2

!1

0

1

2

Deconvolution of fluorescence micrographs
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Physical model of a diffraction-limited microscope

g(x, y, z) = (h3D ⇤ s)(x, y, z)

3-D point spread function (PSF)

h3D(x, y, z) = I0

��
p

�

�
x

M

,

y

M

,

z

M

2

���2

p�(x, y, z) =

Z

R2

P (!1,!2) exp

✓
j2⇡z

!

2
1 + !

2
2

2�f

2
0

◆
exp

✓
�j2⇡

x!1 + y!2

�f0

◆
d!1d!2

Optical parameters
�: wavelength (emission)

M : magnification factor

f0: focal length

P (!1,!2) = k!k<R0
: pupil function

NA = n sin ✓ = R0/f0: numerical aperture



2-D convolution model

25

g(x, y) = (h2D ⇤ s)(x, y)s(x, y)

Thin specimen

Modulation transfer function

ˆh2D(!) =

8
><

>:

2
⇡

 
arccos

⇣
k!k
!0

⌘
� k!k

!0

r
1�

⇣
k!k
!0

⌘2
!
, for 0  k!k < !0

0, otherwise

Airy disk: h2D(x, y) = I0

���2J1(r/r0)
r/r0

���
2

with r =
p

x

2 + y

2
, r0 = �f0

2⇡R0
, J1(r): first-order Bessel function.

Radial profile

Cut-off frequency (Rayleigh): !0 = 2R0
�f0

= ⇡
r0

⇡ 2NA
�

2-D deconvolution: numerical set-up
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Discretization

!0  ⇡ and representation in (separable) sinc basis {sinc(x� k)}k2Z2

Analysis functions: ⌘m(x, y) = h2D(x�m1, y �m2)

[H]m,k = h⌘m, sinc(·� k)i

= hh2D(·�m), sinc(·� k)i

=
�
sinc ⇤ h2D

�
(m� k) = h2D(m� k).

H and L: convolution matrices diagonalized by discrete Fourier transform

Linear step of ADMM algorithm implemented using the FFT

sk+1 =
�
HTH+ µLTL

��1 �
HTy + zk+1

�

with zk+1 = LT
�
µuk �↵k

�



Deconvolution experiments
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10.3 MAP reconstruction of biomedical images 269
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(a) (b) (c)

(a) (b) (c)

Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet
cells. (b) Nerve cells growing around fibers. (c) Artery cells.

where sinc(x) = sin(ºx)/(ºx). The entries of the system matrix in (10.9) are then
obtained as

[H]
m,k = h¥

m

, sinc(·°k)i
= hh2D(·°m),sinc(·°k)i
=

°

sinc§h2D
¢

(m °k) = h2D(m °k).

In effect, this is equivalent to constructing the system matrix from the samples of the
PSF since h2D is already band-limited as a result of the imaging physics (diffraction-
limited microscope).

An important aspect for the implementation of the signal-recovery algorithm is
that H is a discrete convolution matrix which is diagonalized by the discrete Fourier
transform. The same is true for the regularization operator L as well as for any linear
combination, product, or inverse of such convolution matrices. This allows us to
convert (10.23) to a simple Fourier-domain multiplication which yields a fast and
direct implementation of the linear step of the algorithm. The computational cost is
essentially that of two FFTs (one forward and one backward Fourier transform).

Experimental results
The reference data are provided by the three microscopic images in Figure 10.3

which display different types of cells. The input images of size (512£512) are blurred
with a Gaussian PSF of support (9 £ 9) and standard deviation æ0 = 4 to simulate
the effect of wide-field microscope with a low-NA objective. The measurements are
degraded with additive white Gaussian noise so as to meet some prescribed blurred
SNR (BSNR) defined as BSNR = var(Hs)/æ2.

For deconvolution, the algorithm is run for a maximum of 500 iterations, or until
the absolute relative error between the successive iterates is less than 5£10°6. The
results are summarized in Table 10.2. The first observation is that the standard linear
deconvolution (MAP estimator based on a Gaussian prior) performs remarkably well
for the image in Figure 10.3(a), which is heavily textured. The MAP estimator based

270 Recovery of sparse signals

Table 10.2 Deconvolution performance of MAP estimators based on different prior

distributions.

Estimation performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s

Stem cells 20 14.43 13.76 11.86
30 15.92 15.77 13.15
40 18.11 18.11 13.83

Nerve cells 20 13.86 15.31 14.01
30 15.89 18.18 15.81
40 18.58 20.57 16.92

Artery cells 20 14.86 15.23 13.48
30 16.59 17.21 14.92
40 18.68 19.61 15.94

on the Laplace prior, on the other hand, yields the best performance for images hav-
ing sharp edges with a moderate amount of texture, such as those in Figures 10.3(b)-
(c). This confirms the general claim that it is possible to improve the reconstruction
performance through the promotion of sparse solutions. However, as the applica-
tion of Student’s prior to images typically encountered in microscopy demonstrates,
exaggeration in the enforcement of sparsity is a distinct risk. Finally, we note that
the Gaussian and Laplace versions of the algorithm are compatible with the meth-
ods commonly used in the field; for instance, `2-Tikhonov regularization [PMC93]
and `1/TV regularization [DBFZ+06].

10.3.3 Magnetic resonance imaging

Magnetic resonance refers to the property of atomic nuclei in a static magnetic
field to absorb and restitute electromagnetic radiation. This energy is re-emitted
at a resonance frequency that is proportional to the strength of the magnetic field.
The basic idea of magnetic resonance imaging (MRI) is to induce a space-dependent
variation of the frequency of resonance by imposing spatial magnetic gradients. The
specimen is then excited by applying pulsed radio waves that cause the nuclei (or
spins) in the specimen to produce a rotating magnetic field detectable by the receiv-
ing coil(s) of the scanner.

Here, we shall focus on 2-D MRI where the excitation is confined to a single plane.
In effect, by applying a proper sequence of magnetic gradient fields, one is able to
sample the (spatial) Fourier transform of the spin density s(r ) with r 2 R2. Specific-
ally, the mth (noise-free) measurement is given by

ŝ(!m) =
Z

R2
s(r )e°jh!m ,r i dr ,

where the sampling occurs according to some predefined k-space trajectory (the
convention in MRI is to use k =!m as the spatial frequency variable). This is to say
that the underlying basis functions are the complex exponentials ¥m(r ) = e°jh!m ,r i.

Astrocytes cells bovine pulmonary artery cells human embryonic stem cells

Gaussian Estimator Laplace Estimator Student’s Estimator
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.90 19.04 18.34

Stem cells 15.81 20.19 20.50

Deconvolution results in dB
L : gradient

Optimized parameters

Disk shaped PSF (7x7)

2D deconvolution experiment



Magnetic resonance imaging (MRI)
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Physical image formation model (noise-free)

ŝ(!m) =

Z

R2

s(r)e�jh!m,ridr

Equivalent analysis function: ⌘m(r) = e�jh!m,ri

[H]m,n = h⌘m, sinc(·� n)i

= he�jh!m,·i, sinc(·� n)i = e�jh!m,ni

Discretization in separable sinc basis

Property: HTH is circulant (FFT-based implementation)

(sampling of Fourier transform)

Original SL Phantom Fourier Sampling Pattern
12 Angles

Student prior (log)

L : gradient

Optimized parameters

Laplace prior (TV)

MRI: Shepp-Logan phantom



Original Phantom
(Guerquin-Kern TMI 2012)

Gaussian prior (Tikhonov)
SER =17.69 dB

Laplace prior (TV)
SER = 21.37 dB

Student prior
SER = 27.22 dB

L : gradient

Optimized parameters
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MRI phantom: Spiral sampling in k-space

MRI reconstruction experiments

32

10.3 MAP reconstruction of biomedical images 271

15

(a) (b) (c)

(a) (b) (c)

Figure 10.4 Data used in MR reconstruction experiments. (a) Cross section of a wrist. (b)
Angiography image. (c) k-space sampling pattern along 40 radial lines.

Table 10.3 MR reconstruction performance of MAP estimators based on different prior

distributions.

Radial lines Estimation performance (SNR in dB)
Gaussian Laplace Student’s

Wrist 20 8.82 11.8 5.97
40 11.30 14.69 13.81

Angiogram 20 4.30 9.01 9.40
40 6.31 14.48 14.97

The basic problem in MRI is then to reconstruct s(r ) based on the partial know-
ledge of its Fourier coefficients which are also corrupted by noise. While the recon-
struction in the case of a dense Cartesian sampling amounts to a simple inverse Four-
ier transform, it becomes more challenging for other trajectories, especially as the
sampling density decreases.

For simplicity, we discretize the forward model by using the same sinc basis func-
tions as for the deconvolution problem of Section 10.3.2. This results in the system
matrix

[H]m,n = h¥m , sinc(·°n)i
= he°jh!m ,·i, sinc(·°n)i= e°jh!m ,ni

under the assumption that k!mk1 ∑ º. The clear advantage of using the sinc basis
is that H reduces to a discrete Fourier-like matrix, with the caveat that the frequency
sampling is not necessarily uniform.

A convenient feature of this imaging model is that the matrix HT H is circulant so
that the linear iteration step of the algorithm can be computed in exact form using
the FFT.
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The basic problem in MRI is then to reconstruct s(r ) based on the partial know-
ledge of its Fourier coefficients which are also corrupted by noise. While the recon-
struction in the case of a dense Cartesian sampling amounts to a simple inverse Four-
ier transform, it becomes more challenging for other trajectories, especially as the
sampling density decreases.

For simplicity, we discretize the forward model by using the same sinc basis func-
tions as for the deconvolution problem of Section 10.3.2. This results in the system
matrix

[H]m,n = h¥m , sinc(·°n)i
= he°jh!m ,·i, sinc(·°n)i= e°jh!m ,ni

under the assumption that k!mk1 ∑ º. The clear advantage of using the sinc basis
is that H reduces to a discrete Fourier-like matrix, with the caveat that the frequency
sampling is not necessarily uniform.

A convenient feature of this imaging model is that the matrix HT H is circulant so
that the linear iteration step of the algorithm can be computed in exact form using
the FFT.
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Figure 10.5 X-ray tomography and the Radon transform. (a) Imaging geometry. (b) 2-D
reconstruction of a tomogram. (c) Its Radon transform (sinogram).

In practice, the measurements correspond to the sampled values of the Radon
transform of the absorption map s(x) at a series of points (tm ,µm),m = 1, . . . , M . From
(10.32), we deduce that the analysis functions are

¥m(x) = ±
°

tm °hx ,µmi
¢

which represent a series of idealized lines inR2 perpendicular toµm = (cosµm , sinµm).

Discretization
For discretization purpose, we represent the absorption distribution as the weighted

sum of separable B-spline-like basis functions

s(x) =
X

k
s[k]Ø(x °k) ,

with Ø(x) = Ø(x)Ø(y) where Ø(x) is a suitable symmetric kernel (typically, a polyno-
mial B-spline of degree n). The constraint here is thatØ ought to have a short support
to reduce computations, which rules out the use of the sinc basis.

In order to determine the system matrix, we need to compute the Radon transform
of the basis functions. The properties of the Radon transform that are helpful for that
purpose are

x

y

�

r

R ✓
{s}

(t)

=

Z

R2

s(x)�(t� hx,✓i)dx

Projection geometry: x = t✓ + r✓?
with ✓ = (cos ✓, sin ✓)

Radon transform (line integrals)

R✓{s(x)}(t) =
Z

R
s(t✓ + r✓?)dr

sinogram

Equivalent analysis functions: ⌘m(x) = �
�
tm � hx,✓mi

�

Properties of Radon transform

34

Projected translation invariance

R✓{'(·� x0)}(t) = R✓{'}(t� hx0,✓i)

Pseudo-distributivity with respect to convolution

R✓{'1 ⇤ '2}(t) = (R✓{'1} ⇤ R✓{'2}) (t)

Fourier central-slice theorem

Z

R
R✓{'}(t)e�j!tdt = '̂(!)|!=!✓

Proposition: Consider the separable function '(x) = '

1

(x)'

2

(y). Then,

R✓{'(·� x

0

)}(t) = '✓(t� t

0

)

where t

0

= hx
0

,✓i and

'✓(t) =

⇣
1

| cos ✓|'1

� ·
cos ✓

�
⇤ 1

| sin ✓|'2

� ·
sin ✓

�⌘
(t).

�p̂ �
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)

!1

!2

p̂✓(!) = \
R✓{'}(!) = '̂(! cos ✓,! sin ✓)
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Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.

Directions Estimation performance (SNR in dB)
Gaussian Laplace Student’s

SL Phantom 120 16.8 17.53 18.76
SL Phantom 180 18.13 18.75 20.34

Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37

section of the lung of size (750£750). In the simulations of the forward model, we use
a standard parallel geometry with an angular sampling that is matched to the size of
the images. Specifically, the projections are taken along Mµ = 180,360 equiangular
directions for the lung image and Mµ = 120,180 directions for the SL phantom. The
measurements are degraded with Gaussian noise with a signal-to-noise ratio of 20
dB.

For the reconstruction, we solve the quadratic minimization problem (10.21) iter-
atively by using 50 conjugate-gradient (inner) iterations. The reconstruction results
are reported in Table 10.4.

We observe that the imposition of the strong level of sparsity brought by Student’s
priors is advantageous for the SL phantom. This is not overly surprising given that
the SL phanton is an artificial construct composed of piecewise-constant regions (el-
lipses). For the realistic lung image (true CT), we find that the Gaussian solution out-
performs the others. Similarly to the deconvolution and MRI problems, the present
MAP estimators are in line with the Tikhonov-type [WLLL06] and TV [XQJ05] recon-
structions used for X-ray CT.
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Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The
Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different

estimators.

Directions Estimation performance (SNR in dB)
Gaussian Laplace Student’s

SL Phantom 120 16.8 17.53 18.76
SL Phantom 180 18.13 18.75 20.34

Lung 180 22.49 21.52 21.45
Lung 360 24.38 22.47 22.37

section of the lung of size (750£750). In the simulations of the forward model, we use
a standard parallel geometry with an angular sampling that is matched to the size of
the images. Specifically, the projections are taken along Mµ = 180,360 equiangular
directions for the lung image and Mµ = 120,180 directions for the SL phantom. The
measurements are degraded with Gaussian noise with a signal-to-noise ratio of 20
dB.

For the reconstruction, we solve the quadratic minimization problem (10.21) iter-
atively by using 50 conjugate-gradient (inner) iterations. The reconstruction results
are reported in Table 10.4.

We observe that the imposition of the strong level of sparsity brought by Student’s
priors is advantageous for the SL phantom. This is not overly surprising given that
the SL phanton is an artificial construct composed of piecewise-constant regions (el-
lipses). For the realistic lung image (true CT), we find that the Gaussian solution out-
performs the others. Similarly to the deconvolution and MRI problems, the present
MAP estimators are in line with the Tikhonov-type [WLLL06] and TV [XQJ05] recon-
structions used for X-ray CT.
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