

Sparse stochastic processes

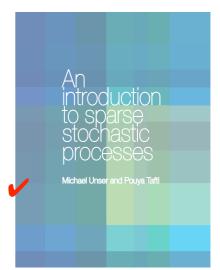
Part 2: Recovery of sparse signals

Prof. Michael Unser, LIB

EPFL Doctoral School EDEE, Course EE-726, Spring 2017

Table of content

- 1. Introduction
- 2. Roadmap to the monograph 🗸
- 3. Mathematical context and background
- 4. Continuous-domain innovation models <
- 5. Operators and their inverses
- 6. Splines and wavelets
- 7. Sparse stochastic processes 🗸
- 8. Sparse representations
- 9. Infinite divisibility and transform-domain statistic
- 10. Recovery of sparse signals
- 11. Wavelet-domain methods

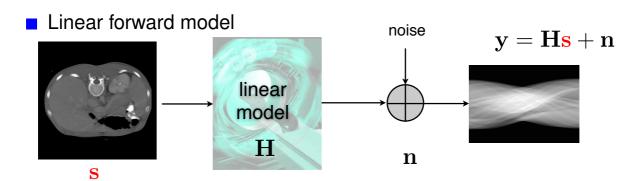


CONTENT

- 10.1 Discretization of inverse problem
- 10.2 MAP estimation and regularization
- 10.3 MAP reconstruction of biomedical images
 - Deconvolution of fluorescent micrographs
 - Magnetic resonance imaging
 - X-ray tomography

3

Resolution of linear inverse problems



III-posed inverse problem: recover ${f s}$ from noisy measurements ${f y}$

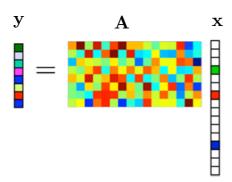
■ Reconstruction as an optimization problem

$$\mathbf{s}^{\star} = \operatorname{argmin} \frac{\|\mathbf{y} - \mathbf{H}\mathbf{s}\|_{2}^{2}}{\|\mathbf{data \ consistency}\|} + \underbrace{\lambda \mathcal{R}(\mathbf{s})}_{\text{regularization}} - \log p_{S}(\mathbf{s})$$

Gaussian-noise likelihood $-\log p_{Y|S}(\mathbf{n})$

Δ

Brief review of compressed sensing (CS)



5

Theory of compressive sensing

- Generalized sampling setting (after discretization)
 - lacktriangle Linear inverse problem: y = Hs + n
 - Sparse representation of signal: $\mathbf{s} = \mathbf{W}\mathbf{x}$ with $\|\mathbf{x}\|_0 = K \ll N_x$
 - lacktriangledown Equivalent $N_y imes N_x$ sensing matrix : $\mathbf{A} = \mathbf{H}\mathbf{W}$
- \blacksquare Formulation of ill-posed recovery problem when $2K < N_y \ll N_x$

(P0)
$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$$
 subject to $\|\mathbf{x}\|_0 \le K$

Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique and the recovery problem (P0) is equivalent to:

(P1)
$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$$
 subject to $\|\mathbf{x}\|_1 \le C_1$
(P1') $\min_{\mathbf{x}} \|\mathbf{x}\|_1$ subject to $\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \le \sigma^2$

(P1')
$$\min_{\mathbf{x}} \|\mathbf{x}\|_1$$
 subject to $\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \le \sigma^2$

[Donoho et al., 2005 Candès-Tao, 2006, ...]

Constrained l_1 minimization \Rightarrow sparsifying effect

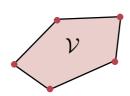
- Discrete signal to reconstruct: $x = (x[n])_{n \in \mathbb{Z}}$
- Sensing operator $H: \ell_1(\mathbb{Z}) \to \mathbb{R}^M$ $x \mapsto \mathbf{z} = H\{x\} = (\langle x, h_1 \rangle, \dots, \langle x, h_M \rangle)$ with $h_m \in \ell_\infty(\mathbb{Z})$
- lacktriangle Closed convex set in measurement space: $\mathcal{C} \subset \mathbb{R}^M$

Representer theorem for constrained ℓ_1 minimization

(P1)
$$\mathcal{V} = \arg\min_{x \in \ell_1(\mathbb{Z})} \|x\|_{\ell_1} \text{ s.t. } \mathrm{H}\{x\} \in \mathcal{C}$$

is convex, weak*-compact with extreme points of the form

$$x_{\mathrm{sparse}}[\cdot] = \sum_{k=1}^{K} a_k \delta[\cdot - n_k]$$
 with $K = \|x_{\mathrm{sparse}}\|_0 \le M$.



If CS condition is satisfied, then solution is unique

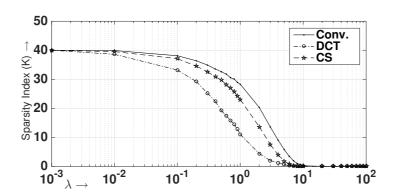
(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016)

7

Controlling sparsity

Measurement model: $y_m = \langle h_m, x \rangle + n[m], \quad m = 1, \dots, M$

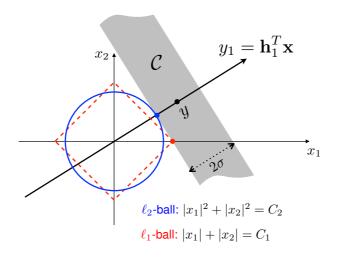
$$x_{\text{sparse}} = \arg\min_{x \in \ell_1(\mathbb{Z})} \left(\sum_{m=1}^M \left| y_m - \langle h_m, x \rangle \right|^2 + \frac{\lambda}{\lambda} ||x||_{\ell_1} \right)$$



Geometry of l_2 vs. l_1 minimization

Prototypical inverse problem

$$\begin{split} & \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_2}^2 \right\} \;\; \Leftrightarrow \;\; \min_{\mathbf{x}} \, \|\mathbf{x}\|_{\ell_2} \;\; \text{subject to} \;\; \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \leq \sigma^2 \\ & \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_1} \right\} \;\; \Leftrightarrow \;\; \min_{\mathbf{x}} \, \|\mathbf{x}\|_{\ell_1} \;\; \text{subject to} \;\; \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \leq \sigma^2 \end{split}$$

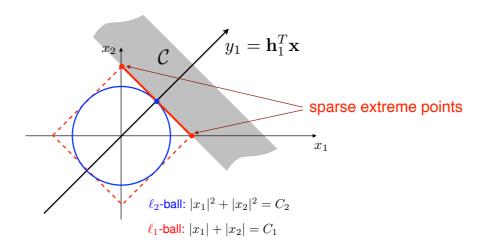


9

Geometry of l_2 vs. l_1 minimization

■ Prototypical inverse problem

$$\begin{split} & \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_2}^2 \right\} \;\; \Leftrightarrow \;\; \min_{\mathbf{x}} \, \|\mathbf{x}\|_{\ell_2} \;\; \text{subject to} \;\; \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \leq \sigma^2 \\ & \min_{\mathbf{x}} \left\{ \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 + \lambda \, \|\mathbf{x}\|_{\ell_1} \right\} \;\; \Leftrightarrow \;\; \min_{\mathbf{x}} \, \|\mathbf{x}\|_{\ell_1} \;\; \text{subject to} \;\; \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{\ell_2}^2 \leq \sigma^2 \end{split}$$



Configuration for $\operatorname{\mathbf{non-unique}}\ \ell_1$ solution

Sparsity and non-quadratic regularization

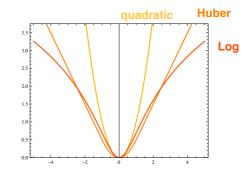
 \bullet ℓ_1 regularization (Total variation)

$$\mathcal{R}(\mathbf{s}) = \|\mathbf{L}\mathbf{s}\|_{\ell_1}$$
 with \mathbf{L} : gradient

Iterative reweighted least squares (IRLS) or FISTA

General potential functions

$$\mathcal{R}(\mathbf{s}) = \sum_{n} \Phi([\mathbf{L}\mathbf{s}]_{n})$$



11

10.1 DISCRETIZATION OF INVERSE PROBLEMS

- Two aspects
 - Discretization of physical forward model
 - Discretization of probability model

How?

By projection on a suitable set of basis functions

$$\{\beta_{\boldsymbol{k}}(\boldsymbol{r})\}_{\boldsymbol{k}\in\Omega}$$

Generalized innovation model

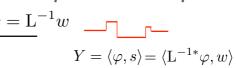
Theoretical framework: Gelfand's theory of generalized stochastic processes

2 Specification of inverse operator

Functional analysis solution of SDE

Very easy ! (after solving 1. & 2.)

sparse stochastic process



Lévy exponent: $f(\omega)$

innovation process

 $X = \langle \varphi, w \rangle$

Analysis step

(1) Characterization of continuous-domain white noise

Higher mathematics: generalized functions (Schwartz) measures on topological vector spaces

aces

Easy when: $\psi_i = \mathrm{L}^*\phi_i$

Regularization operator vs. wavelet analysis

Minlos-Bochner and Lévy-Khintchine theorems

13

Discretization of reconstruction problem

 $\text{Spline-like reconstruction model: } s(\boldsymbol{r}) = \sum_{\boldsymbol{k} \in \Omega} s[\boldsymbol{k}] \beta_{\boldsymbol{k}}(\boldsymbol{r}) \quad \longleftrightarrow \quad \mathbf{s} = (s[\boldsymbol{k}])_{\boldsymbol{k} \in \Omega}$

Innovation model

$$Ls = w$$

$$s = L^{-1}w$$

 $\mathbf{u} = \mathbf{L}\mathbf{s}$ (matrix notation)

 p_{U} is part of **infinitely divisible** family

■ Physical model: image formation and acquisition

$$y_m = \int_{\mathbb{R}^d} s_1(\boldsymbol{x}) \eta_m(\boldsymbol{x}) d\boldsymbol{x} + n[m] = \langle s_1, \eta_m \rangle + n[m], \quad (m = 1, \dots, M)$$

$$\mathbf{y} = \mathbf{y}_0 + \mathbf{n} = \mathbf{H}\mathbf{s} + \mathbf{n}$$

 ${f n}$: i.i.d. noise with pdf p_N

$$[\mathbf{H}]_{m,k} = \langle \eta_m, eta_{m{k}}
angle = \int_{\mathbb{R}^d} \eta_m(m{r}) eta_{m{k}}(m{r}) \mathrm{d}m{r}$$
: $(M imes K)$ system matrix

Posterior probability distribution

$$p_{S|Y}(\mathbf{s}|\mathbf{y}) = \frac{p_{Y|S}(\mathbf{y}|\mathbf{s})p_{S}(\mathbf{s})}{p_{Y}(\mathbf{y})} = \frac{p_{N}(\mathbf{y} - \mathbf{H}\mathbf{s})p_{S}(\mathbf{s})}{p_{Y}(\mathbf{y})}$$

$$= \frac{1}{Z}p_{N}(\mathbf{y} - \mathbf{H}\mathbf{s})p_{S}(\mathbf{s})$$
(Bayes' rule)

$$\mathbf{u} = \mathbf{L}\mathbf{s} \qquad \Rightarrow \qquad p_S(\mathbf{s}) \propto p_U(\mathbf{L}\mathbf{s}) \approx \prod_{\mathbf{k} \in \Omega} p_U([\mathbf{L}\mathbf{s}]_{\mathbf{k}})$$

Additive white Gaussian noise scenario (AWGN)

$$p_{S|Y}(\mathbf{s}|\mathbf{y}) \propto \exp\left(-\frac{\|\mathbf{y} - \mathbf{H}\mathbf{s}\|^2}{2\sigma^2}\right) \prod_{\mathbf{k} \in \Omega} p_U([\mathbf{L}\mathbf{s}]_{\mathbf{k}})$$

... and then take the log and maximize ...

15

General form of MAP estimator

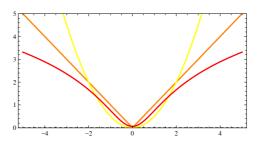
$$\mathbf{s}_{\mathrm{MAP}} = \mathrm{argmin}\left(\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \sigma^{2} \sum_{n} \Phi_{U}([\mathbf{L}\mathbf{s}]_{n})\right)$$

■ Gaussian:
$$p_U(x) = \frac{1}{\sqrt{2\pi}\sigma_0}e^{-x^2/(2\sigma_0^2)}$$
 \Rightarrow $\Phi_U(x) = \frac{1}{2\sigma_0^2}x^2 + C_1$

■ Laplace:
$$p_U(x) = \frac{\lambda}{2} e^{-\lambda |x|}$$
 \Rightarrow $\Phi_U(x) = \lambda |x| + C_2$

■ Student:
$$p_U(x) = \frac{1}{B\left(r, \frac{1}{2}\right)} \left(\frac{1}{x^2 + 1}\right)^{r + \frac{1}{2}} \quad \Rightarrow \quad \Phi_U(x) = \left(r + \frac{1}{2}\right) \log(1 + x^2) + C_3$$

Potential: $\Phi_U(x) = -\log p_U(x)$



$p_X(x)$	$\Phi_X(x) = -\log p_X(x) \text{ as } x \to 0$	$\Phi_X(x)$ as $x \to \pm \infty$	Smooth	Convex
Gaussian	$a_0 + \frac{x^2}{2\sigma^2}$	$a_0 + \frac{x^2}{2\sigma^2}$	Yes	Yes
Laplace $(\lambda \in \mathbb{R}^+)$	$a_0 + \lambda x $	$a_0 + \lambda x $	No	Yes
Sym Gamma $r \in \mathbb{R}^+$	$ \begin{cases} \log(a_0' + a_r' x ^{2r-1} + O(x^2)), & r < 3/2 \\ a_0 + \frac{x^2}{4r-6} + O(x ^{\min(4,2r-1)}), & r > 3/2 \end{cases} $	$b_0 + x - (r-1)\log x $	No	No
Hyperbolic secant	$a_0 + \frac{\pi^2 x^2}{8\sigma_0^2} + O(x^4)$	$-\log\sigma_0 + \frac{\pi}{2\sigma_0} x $	Yes	Yes
Meixner $r, s \in \mathbb{R}^+$	$a_0 + \frac{\psi^{(1)}(r/2)}{4s^2}x^2 + O(x^4)$	$b_0 + \frac{\pi}{2s} x - (r-1)\log x $	Yes	No
Cauchy $s \in \mathbb{R}^+$	$a_0 + \frac{x^2}{s^2} + O(x^4)$	$b_0 - \log s + 2\log x $	Yes	No
Sym Student $r \in \mathbb{R}^+$	$a_0 + \left(r + \frac{1}{2}\right)x^2 + O\left(x^4\right)$	$b_0 + (2r+1)\log x $	Yes	No
$S\alpha S, \alpha \in (0,2], s \in \mathbb{R}^+$	$a_0 + \frac{\Gamma\left(\frac{3}{a}\right)}{2s^2\Gamma\left(\frac{1}{a}\right)}x^2 + O\left(x^4\right)$	$b_0 - \alpha \log s + (\alpha + 1) \log x $	Yes	No

 $\Gamma(z)$ and $\psi^{(1)}(r)$ are Euler's gamma and first-order poly-gamma functions, respectively (see Appendix C).

Table 10.1 Asymptotic behavior of the potential function $\Phi_X(x)$ for the infinite-divisible distributions in Table 4.1.

17

LMMSE / Gaussian solution

$$\begin{split} \mathbf{s}_{\mathrm{MAP}} &= \arg\min_{\mathbf{s} \in \mathbb{R}^K} \mathcal{C}_2(\mathbf{s}, \mathbf{y}) \quad \text{with} \quad \mathcal{C}_2(\mathbf{s}, \mathbf{y}) = \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2 + \sigma^2 \frac{1}{2} \|\mathbf{L}_{\mathrm{G}}\mathbf{s}\|_2^2 \\ & \quad \mathbf{L}_{\mathrm{G}} = \mathbf{C}_{ss}^{-1/2} \text{ where } \mathbf{C}_{ss} = \mathbb{E}\{\mathbf{s}\mathbf{s}^T\} \\ & \frac{\partial \mathcal{C}_2(\mathbf{s}, \mathbf{y})}{\partial \mathbf{s}} = -\mathbf{H}^T(\mathbf{y} - \mathbf{H}\mathbf{s}) + \sigma^2 \mathbf{L}_{\mathrm{G}}^T \mathbf{L}_{\mathrm{G}}\mathbf{s} = \mathbf{0} \\ & \Rightarrow \quad \mathbf{s}_{\mathrm{MAP}}(\mathbf{y}) = \left(\mathbf{H}^T \mathbf{H} + \sigma^2 \mathbf{L}_{\mathrm{G}}^T \mathbf{L}_{\mathrm{G}}\right)^{-1} \mathbf{H}^T \mathbf{y} \end{split}$$

■ Equivalence with LMMSE solution (Wiener filter)

$$\mathbf{s}_{\mathrm{LMMSE}}(\mathbf{y}) = \mathbf{C}_{ss}\mathbf{H}^T \left(\mathbf{H}\mathbf{C}_{ss}\mathbf{H}^T + \mathbf{C}_{nn}\right)^{-1}\mathbf{y}$$

$$\mathbf{C}_{ss}^{-1} = \mathbf{L}_{\mathrm{G}}^{T} \mathbf{L}_{\mathrm{G}} \quad \text{and} \quad \mathbf{C}_{nn} = \mathbb{E}\{\mathbf{nn}^{T}\} = \sigma^{2} \mathbf{I}$$

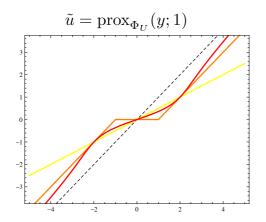
$$\mathbf{H}^{T} \mathbf{H} \mathbf{C}_{ss} \mathbf{H}^{T} + \sigma^{2} \mathbf{C}_{ss}^{-1} \mathbf{C}_{ss} \mathbf{H}^{T} = \mathbf{H}^{T} \mathbf{H} \mathbf{C}_{ss} \mathbf{H}^{T} + \sigma^{2} \mathbf{H}^{T}$$

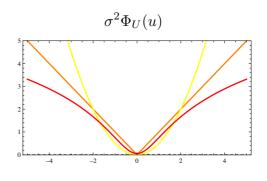
$$\left(\mathbf{H}^{T} \mathbf{H} + \sigma^{2} \mathbf{C}_{ss}^{-1}\right) \mathbf{C}_{ss} \mathbf{H}^{T} = \mathbf{H}^{T} \left(\mathbf{H} \mathbf{C}_{ss} \mathbf{H}^{T} + \sigma^{2} \mathbf{I}\right)$$

$$\mathbf{C}_{ss} \mathbf{H}^{T} \left(\mathbf{H} \mathbf{C}_{ss} \mathbf{H}^{T} + \sigma^{2} \mathbf{I}\right)^{-1} = \left(\mathbf{H}^{T} \mathbf{H} + \sigma^{2} \mathbf{C}_{ss}^{-1}\right)^{-1} \mathbf{H}^{T}$$

Proximal operator: pointwise denoiser

$$\operatorname{prox}_{\Phi_U}(y; \sigma^2) = \arg\min_{u \in \mathbb{R}} \frac{1}{2} |y - u|^2 + \sigma^2 \Phi_U(u)$$





- linear attenuation
- soft-threshold
- shrinkage function
- ℓ_2 minimization
- ℓ_1 minimization
- $\approx \quad \ell_p \text{ relaxation for } p \to 0$

19

Maximum a posteriori (MAP) estimation

Constrained optimization formulation

Auxiliary innovation variable: $\mathbf{u} = \mathbf{L}\mathbf{s}$

$$\mathbf{s}_{\mathrm{MAP}} = \arg\min_{\mathbf{s} \in \mathbb{R}^K} \left(\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2 + \sigma^2 \sum_n \Phi_U ig([\mathbf{u}]_n ig)
ight)$$
 subject to $\mathbf{u} = \mathbf{L}\mathbf{s}$

Augmented Lagrangian method

Quadratic penalty term: $\frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_2^2$

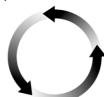
Lagrange multiplier vector: α

$$\mathcal{L}_{\mathcal{A}}(\mathbf{s}, \mathbf{u}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{g} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \sigma^{2} \sum_{n} \Phi_{U}([\mathbf{u}]_{n}) + \boldsymbol{\alpha}^{T} (\mathbf{L}\mathbf{s} - \mathbf{u}) + \frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_{2}^{2}$$

Alternating direction method of multipliers (ADMM)

$$\mathcal{L}_{\mathcal{A}}(\mathbf{s}, \mathbf{u}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{g} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \sigma^{2} \sum_{n} \Phi_{U}([\mathbf{u}]_{n}) + \boldsymbol{\alpha}^{T}(\mathbf{L}\mathbf{s} - \mathbf{u}) + \frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_{2}^{2}$$

Sequential minimization



$$\mathbf{s}^{k+1} \leftarrow \arg\min_{\mathbf{s} \in \mathbb{R}^N} \mathcal{L}_{\mathcal{A}}(\mathbf{s}, \mathbf{u}^k, \boldsymbol{\alpha}^k)$$

$$\alpha^{k+1} = \alpha^k + \mu (\mathbf{L}\mathbf{s}^{k+1} - \mathbf{u}^k)$$

$$\mathbf{u}^{k+1} \leftarrow \arg\min_{\mathbf{u} \in \mathbb{R}^N} \mathcal{L}_{\mathcal{A}}(\mathbf{s}^{k+1}, \mathbf{u}, \boldsymbol{\alpha}^{k+1})$$

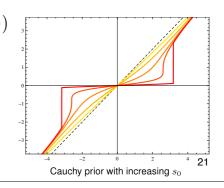
 $\textbf{Linear inverse problem:} \quad \mathbf{s}^{k+1} = \left(\mathbf{H}^T\mathbf{H} + \mu\mathbf{L}^T\mathbf{L}\right)^{-1}\left(\mathbf{H}^T\mathbf{y} + \mathbf{z}^{k+1}\right)$

with
$$\mathbf{z}^{k+1} = \mathbf{L}^T \left(\mu \mathbf{u}^k - oldsymbol{lpha}^k
ight)$$

Nonlinear denoising: $\mathbf{u}^{k+1} = \mathrm{prox}_{\Phi_U} \left(\mathbf{L} \mathbf{s}^{k+1} + \frac{1}{\mu} \boldsymbol{\alpha}^{k+1}; \frac{\sigma^2}{\mu} \right)$

Proximal operator taylored to stochastic model

$$\operatorname{prox}_{\Phi_U}(y;\lambda) = \arg\min_{u} \frac{1}{2} |y - u|^2 + \lambda \Phi_U(u)$$



10.3 RECONSTRUCTION OF BIOMEDICAL IMAGES

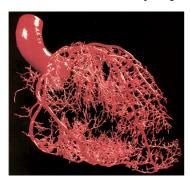
- Common image model and numerical set-up
 - $lacksquare rac{1}{|\pmb{\omega}|^{\gamma}}$ spectral decay $\ \longleftrightarrow \ (-\Delta)^{rac{\gamma}{2}}s=w$ (self-similar image model)
 - Robust localization/decoupling L: discrete gradient magnitude (rotation invariant)
 - Three flavors of potentials:

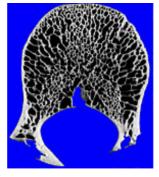
$$|x|^2$$
 (Gaussian), $|x|$ (Laplacian), $\log(x^2 + \epsilon)$ (Student)

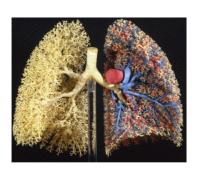
- Deconvolution of fluorescent micrographs
- Magnetic resonance imaging
- X-ray tomography

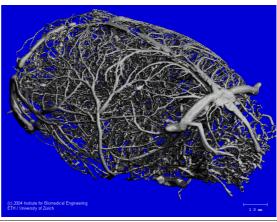
Relevance of self-similarly for bio-imaging

Fractals and physiology









23

Deconvolution of fluorescence micrographs

Physical model of a diffraction-limited microscope

$$g(x, y, z) = (h_{3D} * s)(x, y, z)$$

3-D point spread function (PSF)

$$h_{\mathrm{3D}}(x,y,z) = I_0 \left| p_{\lambda} \left(\frac{x}{M}, \frac{y}{M}, \frac{z}{M^2} \right) \right|^2$$

$$p_{\lambda}(x,y,z) = \int_{\mathbb{R}^2} P(\omega_1,\omega_2) \exp\left(j2\pi z \frac{\omega_1^2 + \omega_2^2}{2\lambda f_0^2}\right) \exp\left(-j2\pi \frac{x\omega_1 + y\omega_2}{\lambda f_0}\right) d\omega_1 d\omega_2$$

Optical parameters

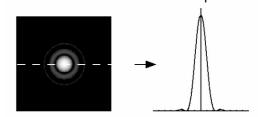
- \blacksquare λ : wavelength (emission)
- lacktriangleright M: magnification factor
- \bullet f_0 : focal length
- $P(\omega_1,\omega_2)=\mathbb{1}_{\|\boldsymbol{\omega}\|< R_0}$: pupil function
- NA = $n \sin \theta = R_0/f_0$: numerical aperture

24

2-D convolution model

Thin specimen
$$g(x,y) = (h_{\mathrm{2D}} * s)(x,y)$$

Airy disk: $h_{\mathrm{2D}}(x,y) = I_0 \left| 2 \frac{J_1(r/r_0)}{r/r_0} \right|^2$



Radial profile

with
$$r=\sqrt{x^2+y^2}$$
, $r_0=\frac{\lambda f_0}{2\pi R_0}$, $J_1(r)$: first-order Bessel function.

Modulation transfer function

$$\hat{h}_{\mathrm{2D}}(\boldsymbol{\omega}) = \left\{ \begin{array}{l} \frac{2}{\pi} \left(\arccos \left(\frac{\|\boldsymbol{\omega}\|}{\omega_0} \right) - \frac{\|\boldsymbol{\omega}\|}{\omega_0} \sqrt{1 - \left(\frac{\|\boldsymbol{\omega}\|}{\omega_0} \right)^2} \right), & \text{for } 0 \leq \|\boldsymbol{\omega}\| < \omega_0 \\ 0, & \text{otherwise} \end{array} \right.$$

Cut-off frequency (Rayleigh):
$$\omega_0=rac{2R_0}{\lambda f_0}=rac{\pi}{r_0}pproxrac{2\mathrm{NA}}{\lambda}$$

25

2-D deconvolution: numerical set-up

Discretization

 $\omega_0 \leq \pi$ and representation in (separable) sinc basis $\{\mathrm{sinc}({m x}-{m k})\}_{{m k}\in\mathbb{Z}^2}$

Analysis functions: $\eta_{m}(x,y) = h_{2D}(x - m_1, y - m_2)$

$$[\mathbf{H}]_{\boldsymbol{m},\boldsymbol{k}} = \langle \eta_{\boldsymbol{m}}, \operatorname{sinc}(\cdot - \boldsymbol{k}) \rangle$$

$$= \langle h_{2D}(\cdot - \boldsymbol{m}), \operatorname{sinc}(\cdot - \boldsymbol{k}) \rangle$$

$$= (\operatorname{sinc} * h_{2D})(\boldsymbol{m} - \boldsymbol{k}) = h_{2D}(\boldsymbol{m} - \boldsymbol{k}).$$

 \mathbf{H} and $\mathbf{L}:$ convolution matrices diagonalized by discrete Fourier transform

Linear step of ADMM algorithm implemented using the FFT

$$\mathbf{s}^{k+1} = \left(\mathbf{H}^T \mathbf{H} + \mu \mathbf{L}^T \mathbf{L}\right)^{-1} \left(\mathbf{H}^T \mathbf{y} + \mathbf{z}^{k+1}\right)$$

with $\mathbf{z}^{k+1} = \mathbf{L}^T \left(\mu \mathbf{u}^k - \boldsymbol{\alpha}^k\right)$

26

Deconvolution experiments

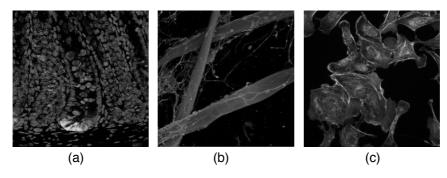


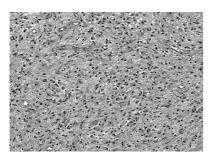
Figure 10.3 Images used in deconvolution experiments. (a) Stem cells surrounded by goblet cells. (b) Nerve cells growing around fibers. (c) Artery cells.

 $\textbf{Table 10.2} \ \ \text{Deconvolution performance of MAP estimators based on different prior distributions}.$

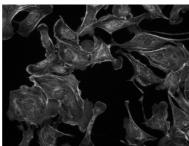
	Estimation performance (SNR in dB)			
	BSNR (dB)	Gaussian	Laplace	Student's
Stem cells	20	14.43	13.76	11.86
	30	15.92	15.77	13.15
	40	18.11	18.11	13.83
Nerve cells	20	13.86	15.31	14.01
	30	15.89	18.18	15.81
	40	18.58	20.57	16.92
Artery cells	20	14.86	15.23	13.48
	30	16.59	17.21	14.92
	40	18.68	19.61	15.94

27

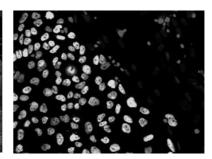
2D deconvolution experiment



Astrocytes cells



bovine pulmonary artery cells



human embryonic stem cells

Disk shaped PSF (7x7)

Deconvolution results in dB

 $\label{eq:Lorent} L : \text{gradient}$ Optimized parameters

	Gaussian Estimator	Laplace Estimator	Student's Estimator
Astrocytes cells	12.18	10.48	10.52
Pulmonary cells	16.90	19.04	18.34
Stem cells	15.81	20.19	20.50

Magnetic resonance imaging (MRI)

■ Physical image formation model (noise-free)

$$\hat{s}(\boldsymbol{\omega}_m) = \int_{\mathbb{R}^2} s(\boldsymbol{r}) \mathrm{e}^{-\mathrm{j}\langle \boldsymbol{\omega}_m, \boldsymbol{r} \rangle} \mathrm{d}\boldsymbol{r}$$

(sampling of Fourier transform)

Equivalent analysis function: $\eta_m({m r})={
m e}^{-{
m j}\langle {m \omega}_m,{m r}
angle}$

■ Discretization in separable sinc basis

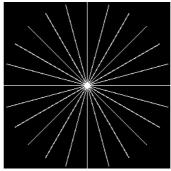
$$[\mathbf{H}]_{m,n} = \langle \eta_m, \operatorname{sinc}(\cdot - \boldsymbol{n}) \rangle$$
$$= \langle e^{-j\langle \boldsymbol{\omega}_m, \cdot \rangle}, \operatorname{sinc}(\cdot - \boldsymbol{n}) \rangle = e^{-j\langle \boldsymbol{\omega}_m, \boldsymbol{n} \rangle}$$

Property: $\mathbf{H}^T \mathbf{H}$ is circulant (FFT-based implementation)

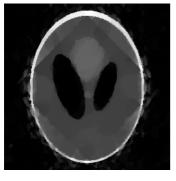
29

MRI: Shepp-Logan phantom

Original SL Phantom



Fourier Sampling Pattern 12 Angles

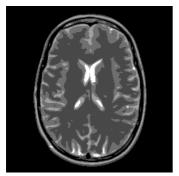


Laplace prior (TV)

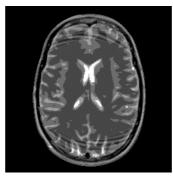
Student prior (log)

 $\label{eq:Lorent} L : \text{gradient}$ Optimized parameters

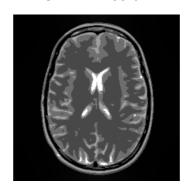
MRI phantom: Spiral sampling in k-space



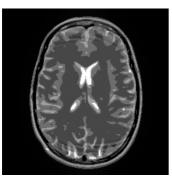
Original Phantom (Guerquin-Kern TMI 2012)



Gaussian prior (Tikhonov) SER =17.69 dB



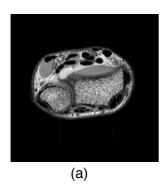
Student prior SER = 27.22 dB

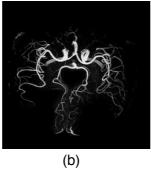


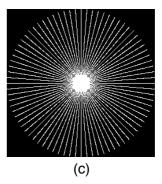
Laplace prior (TV) SER = 21.37 dB

31

MRI reconstruction experiments







 $L: {\hbox{\it gradient}}$

Optimized parameters

Figure 10.4 Data used in MR reconstruction experiments. (a) Cross section of a wrist. (b) Angiography image. (c) k-space sampling pattern along 40 radial lines.

Table 10.3 MR reconstruction performance of MAP estimators based on different prior distributions.

	Radial lines	Estimation performance (SNR in dB)		
		Gaussian	Laplace	Student's
Wrist	20	8.82	11.8	5.97
	40	11.30	14.69	13.81
Angiogram	20	4.30	9.01	9.40
	40	6.31	14.48	14.97

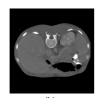
32

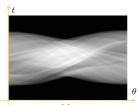
X-ray tomography

Projection geometry: ${m x}=t{m heta}+r{m heta}^{\perp}$ with ${m heta}=(\cos heta,\sin heta)$

■ Radon transform (line integrals)

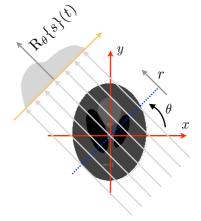
$$R_{\theta}\{s(\boldsymbol{x})\}(t) = \int_{\mathbb{R}} s(t\boldsymbol{\theta} + r\boldsymbol{\theta}^{\perp}) dr$$
$$= \int_{\mathbb{R}^2} s(\boldsymbol{x}) \delta(t - \langle \boldsymbol{x}, \boldsymbol{\theta} \rangle) d\boldsymbol{x}$$





sinogram

Equivalent analysis functions: $\eta_m(m{x}) = \deltaig(t_m - \langle m{x}, m{ heta}_m
angleig)$



33

Properties of Radon transform

■ Projected translation invariance

$$R_{\theta}\{\varphi(\cdot - \boldsymbol{x}_0)\}(t) = R_{\theta}\{\varphi\}(t - \langle \boldsymbol{x}_0, \boldsymbol{\theta}\rangle)$$

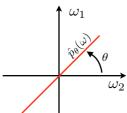
■ Pseudo-distributivity with respect to convolution

$$R_{\theta}\{\varphi_1 * \varphi_2\}(t) = (R_{\theta}\{\varphi_1\} * R_{\theta}\{\varphi_2\})(t)$$

 $\hat{p}_{\theta}(\omega) = \widehat{R_{\theta}\{\varphi\}}(\omega) = \hat{\varphi}(\omega\cos\theta, \omega\sin\theta)$

■ Fourier central-slice theorem

$$\int_{\mathbb{R}} R_{\theta} \{ \varphi \}(t) e^{-j\omega t} dt = \hat{\varphi}(\boldsymbol{\omega})|_{\boldsymbol{\omega} = \omega \boldsymbol{\theta}}$$

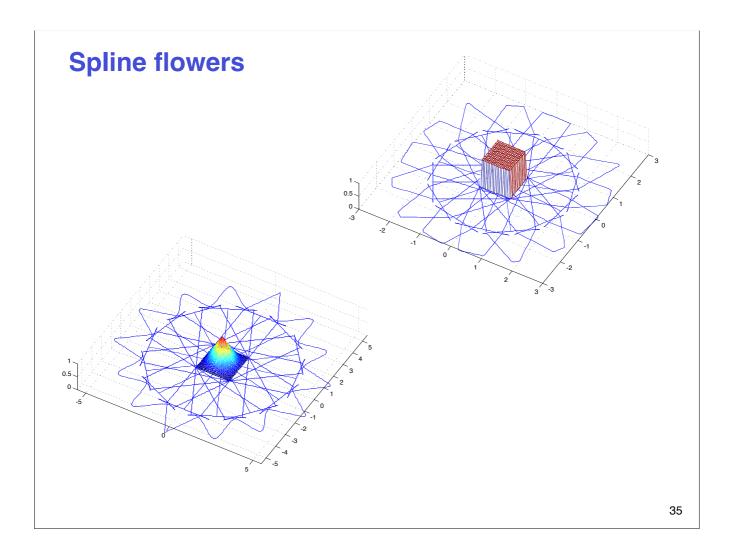


Proposition: Consider the separable function $\varphi(x) = \varphi_1(x)\varphi_2(y)$. Then,

$$R_{\theta}\{\varphi(\cdot - \boldsymbol{x}_0)\}(t) = \varphi_{\theta}(t - t_0)$$

where $t_0 = \langle {m x}_0, {m heta}
angle$ and

$$\varphi_{\theta}(t) = \left(\frac{1}{|\cos \theta|} \varphi_1\left(\frac{\cdot}{\cos \theta}\right) * \frac{1}{|\sin \theta|} \varphi_2\left(\frac{\cdot}{\sin \theta}\right)\right)(t).$$



X-ray tomography reconstruction results

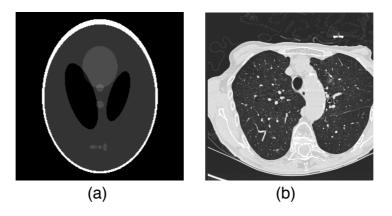


Figure 10.6 Images used in X-ray tomographic reconstruction experiments. (a) The Shepp-Logan (SL) phantom. (b) Cross section of a human lung.

Table 10.4 Reconstruction results of X-ray computed tomography using different estimators.

	Directions	Estimation performance (SNR in dB)		
		Gaussian	Laplace	Student's
SL Phantom	120	16.8	17.53	18.76
SL Phantom	180	18.13	18.75	20.34
Lung	180	22.49	21.52	21.45
Lung	360	24.38	22.47	22.37